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Density profiles and pair correlation functions of hard spheres in narrow slits

B. Götzelmann and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

~Received 6 September 1996!

A hard-sphere fluid confined by hard, structureless, and parallel walls is investigated using a certain version
of the weighted density-functional theory. The density profile, the excess coverage, the finite-size contribution
to the free energy, the solvation force, and the total correlation function are determined as functions of the slit
width L for various bulk number densitiesrb . In quantitative agreement with rigorous results, the present
version of density-functional theory yields a constant and large but finite number density profile for the limiting
case thatL is reduced to the diameter of the hard spheres. Within the Derjaguin approximation, the results for
the slit geometry allows us to obtain the solvation force between two large hard spheres immersed in a fluid of
much smaller hard spheres.@S1063-651X~97!01202-6#

PACS number~s!: 61.20.Ne, 68.15.1e, 68.10.Cr
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I. INTRODUCTION

The knowledge of the structural properties of fluids
confined geometries is important for both applied and ba
research. For most applications one has to deal with an
semble of interconnected pores with irregular sizes and
ometries. This severely impedes a quantitative compar
between theoretical predictions and actual experimental d
Typically, in this case only general trends and spatially
eraged quantities can be tested reliably. Consequently
such systems many details of theoretical predictions for c
fined fluids remain unchecked.

Therefore, it is highly welcome that substantial expe
mental progress has been made to prepare model pores
consist of parallel plates whose surfaces are smooth bot
atomic and mesoscopic scales and that are immersed in
fluid reservoir. Such well-defined systems are close real
tions of corresponding theoretical models and can serve
suitable testing ground for the behavior of the more comp
systems mentioned above.Inter alia, by varying the distance
L between the plates, one can study the crossover fro
three-dimensional bulk system to a two-dimensional fluid

From an experimental point of view the structural prop
ties of a fluid confined to this slit geometry can be probed
various levels. First, one can determine global proper
such as the mean density in the slit and the excess de
compared with a hypothetical bulk system of the same s
Second, ellipsometry and the reflectivity of light, x rays,
neutrons enable one to determine the density profiles no
to the slit surfaces. Third, atomic force microscopes all
one to monitor the solvation force acting on the two plat
which reflects the change of free energy of the confined fl
as function ofL.

More recently, with the advent of powerful neutron a
synchrotron sources, a fourth component has been adde
the spectrum of experimental techniques. The analysis of
diffusescattering of x rays and neutrons under grazing in
dence gives access to the two-point correlation function
the confined fluid. Combined with the knowledge of the on
point correlation function, i.e., the density profile, this pr
vides deep insight into the structural changes of fluids
551063-651X/97/55~3!/2993~13!/$10.00
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duced by their confinement including lateral correlatio
~see, e.g., Refs.@1–4# and references therein!.

The purpose of the present contribution is to provide
initial step towards guiding such kind of experiments by c
culating the two-point correlation function of ahard-sphere
fluid between twohard walls ~HSHW! based on a weighted
density-functional theory~DFT!. Since this approach re
quires as a prerequisite the knowledge of the density profi
we use this opportunity to compare our results for the o
point correlation function with those obtained previously
different techniques for a HSHW; furthermore, we pay p
ticular attention to the limit of small values ofL and to the
discussion of the solvation forces.

Our choice for this model system is motivated by its fo
lowing virtues.

~i! Due to its simplicity, it is particularly well suited for
comparisons with simulation data. Systems with soft rep
sive or long-ranged attractive interaction potentials pose
ditional difficulties such as their perturbative treatment
analytic approaches and their unavoidable truncations
simulations.

~ii ! Within the framework of DFT, long-ranged interac
tions between the fluid particles are typically incorporated
perturbation theory@see~i!#, which needs as a prerequisi
the results of the corresponding hard-sphere reference
tems.

~iii ! The investigation of the HSHW model is not only a
important step for the study of atomic fluids, but it is also
appropriate model for the description of other physical s
tems. Under favorable conditions certain colloidal partic
between glass plates behave like hard spheres in a slit
can be investigated by means of video microscopy@5#. Con-
fined micelles represent another realization of this mo
system exhibiting substantial technical and biological int
est @6–8#.

~iv! The HSHW model is the simplest model that allow
one to study a nontrivial dimensional crossover fromd53 to
d52. In this model the spheres lose one degree of freed
when the widthL of the slit is reduced to the diameter of th
hard spheres. This raises the question whether this syste
purely two dimensional and can be characterized as a h
disk fluid or whether the presence of the three-dimensio
2993 © 1997 The American Physical Society
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2994 55B. GÖTZELMANN AND S. DIETRICH
reservoir requires a different description. Since this is imp
tant for the interpretation of experiments with very narro
slits, in Sec. II we also introduce the density-function
theory of two-dimensional systems and provide a careful
vestigation of this limiting case in Sec. III.

The HSHW model has already been investigated b
variety of techniques. For certain values of the chemical
tential and ofL simulations@8–13# have provided density
distributions and values for the solvation force. The sa
quantities and, in addition, the total correlation function ha
been studied in the framework of integral theories such as
Percus-Yevick approximation@14–17#. Compared to these
methods, the DFT is computationally less demanding
also enables one to study the free energy of the sys
Simulations face the difficulties that they are restricted t
few selected parameter values and that in the grand cano
ensemble hard sphere fluids confined to narrow slits exh
strong fluctuations@18#. As far as the integral theories ar
concerned, it is known that they do not capture interest
phase transitions such as wetting phenomena. Since fo
ture work we are interested in them, we implement a spec
form of DFT @weighted density approximation~WDA!# that
is known to capture them. Thus, in a later stage our appro
will enable us to build on the present results for the desc
tion of the two-point correlation function close to such inte
facial phase transitions. For these reasons it is worthwhil
analyze the HSHW model in terms of DFT.

In Sec. II the DFT is introduced and the WDA used he
is specified. In Sec. III we investigate the limitL→2s. A
thorough discussion of the density profiles~Sec. IV! and of
the correlation functions~Sec. V! follows. Section VI sum-
marizes our main results.

II. DENSITY-FUNCTIONAL THEORY
IN d SPATIAL DIMENSIONS

A. One- and two-point correlation functions

In thermal equilibrium the structural properties of
d-dimensional inhomogeneous fluid consisting of hard g
eralized spheres follow from the grand canonical partit
function

Zd„m,T;@V~R!#…

511 (
N51

`
1

N!LdNE ddR1•••d
dRN

3expS bE ddR@$m2V~R!%r̂N~R;$Ri%!#

2bF~$Ri%! D ~2.1!

as a function of the chemical potentialm and of the tempera
ture T51/kBb; $Ri%5$R1 , . . . ,RN%. The particles are ex
posed to an external potentialV(R), which includes the con-
finement due to the container walls and thus limits the spa
integrations here and in the following. For the pair poten

F~$Ri%!5
1

2 (
i , j51
iÞ j

N

c~ uRi2Rj u!, ~2.2!
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c~r !5H `, r,s/2

0, r.s/2, ~2.3!

Zd describes hard spheres, disks, and rods of diameters for
d53, 2, and 1, respectively. In terms of the number dens
operator r̂N(R;$Ri%)5( i51

N d(R2Ri)5 r̂(R) the equilib-
rium density profile of the particles in the presence of t
external potentialV(R) is given by

rd~R!5:^r̂N~R;$Ri%!&52
1

b

d lnZd„m,T;@V~R!#…

dV~R!
.

~2.4!

The second derivative yields the total correlation functi
h(R1 ,R2),

2
1

b

drd~R1!

dV~R2!
5^r̂~R1!r̂~R2!&2^r̂~R1!&^r̂~R2!&

5:h~R1 ,R2!rd~R1!rd~R2!

1rd~R1!d~R12R2!. ~2.5!

Within the framework of the density-functional theor
the equilibrium density profilerd(R) minimizes the grand
potential functional@19#

Vd„@ r̃d~R!#;T,m;@V~R!#…5Fex
~d!
„@ r̃d~R!#;T…

1F id
~d!
„@ r̃d~R!#;T…

2E
Rd
ddR@m2V~R!#r̃d~R!.

~2.6!

The ideal gas contribution is given analytically by (L is the
thermal de Broglie wavelength!

F id
~d!
„@ r̃d~R!#;T…5

1

bERdddRr̃d~R!„ln@ r̃d~R!Ld#21….

~2.7!

The support of the trial functionr̃d(R) is that domain in
Rd where the external potentialV(R) differs from infinity;
otherwise r̃d(R)50. The excess Helmholtz free-energ
functionalFex

(d)
„@ r̃d(R)#;T… is not known exactly and an ap

propriate approximation has to be chosen~see Sec. II B!.
Once the density profilerd(R) has been obtained by mini
mizing Eq.~2.6!, the direct correlation function

cd
~2!
„R1 ,R2 ;@rd~R!#…:52b

d2Fex
~d!@rd~R!#

drd~R1!drd~R2!
~2.8!

and via the Ornstein-Zernicke equation

hd~R1 ,R2!5cd
~2!~R1 ,R2!1E

Rd
ddR3

3cd
~2!~R1 ,R3!rd~R3!hd~R3 ,R2! ~2.9!
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55 2995DENSITY PROFILES AND PAIR CORRELATION . . .
the radial distribution functiongd(R1 ,R2)5hd(R1 ,R2)11
is accessible.

We shall compute all quantities for a slit consisting of tw
parallel structureless hard walls that are described by
external potential

V~R!5H `, z,s, z.L2s

0, s,z,L2s. ~2.10!

Our choice of the origin and the widthL is motivated by the
comparison with an atomistic model of a slit. In this case
walls consist of two parallel semi-infinite crystals. The nuc
of the atoms forming the top layer of one of these crystals
in a plane that is located atz50 for the left wall and at
z5L for the right wall. ~We do not consider vicinal sur
faces.! Between these two walls a fluid with a soft interacti
with the substrate has a nonvanishing number density
0,z,L. If the atoms forming the walls are replaced by ha
spheres of diameters and are smeared out in the later
directions, a fluid with a hard-sphere interaction is expo
to the potential defined in Eq.~2.10!. Since this substrate
potential is translationally invariant with respect to the late
coordinatesx and y ~in d53), the density profiler3(R)
depends only on the normal coordinatez as long as there is
no freezing that leads to a periodic density variation also
the lateral directions@20#. The total and the direct correlatio
function depend on the normal distancesz1 andz2 from the
wall and on the lateral distancer 125ur12r2u, where
R5(r ,z)5(x,y,z). ~In the case of freezing the two-poin
correlation functions depend onr125r12r2 instead of
ur12r2u.!

B. The linear weighted density approximation

Since the exact expression for the Helmholtz free-ene
functional is not known one has to resort to one of the
u
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proximations known in the literature@21#. Depending on the
physical system and the quantities under consideration,
chooses an approach that captures the essential features
out being computationally too demanding.

For a hard-sphere fluid (d53) close to a single hard wall
in a previous publication@22# we argued that the calculatio
of density profiles and of correlation functions can be carr
out successfully using the linear weighted density appro
mation~LWDA ! @23#. In this approach four weighted dens
ties

r̄n~R1!5E
R3
d3R2wn~ uR12R2u!r~R2! ~2.11!

with normalized weights@v5(p/6)s3#

wn~R!5
1

8v
Q~s2R!3H 1, n50

S 11
3

n D S 12
Rn

snD , n51,2,3

~2.12!

are introduced. The excess free energy is a functiona
these weighted densities,

Fex
~d53!@r#5 (

n50

3 E
V
d3R$ f n„r̄n~R!…

1 1
2 @r~R!2 r̄n~R!# f n8„r̄n~R!…%, ~2.13!

where the functions
bv

h
f n~h!55

21614S 12
4

h D ln~12h!, n50

3~216126h27h2!

2~12h!2
13S 12

8

h D ln~12h!, n51

0, n52

40268h125h2

~12h!2
28S 12

5

h D ln~12h!, n53

~2.14!
or

e

ifi-
uid
lts
depend on the dimensionless packing fractionh5vr. By
construction in the limit of a homogeneous density distrib
tion @r(R)5rb# the LWDA free energyFex

(d53)@rd53# and
the corresponding direct correlation functioncd53

(2) (R1 ,R2)
reduce to the known Percus-Yevick~PY! bulk results@24#.
This is important as we need a proper bulk limit in order
be able to describe correctly the influence of the walls. F
thermore, this allows us to express the results of a slit, wh
thermodynamic state is characterized by the intensive v
-

r-
se
ri-

ablem, equivalently in terms of the densityrb of a bulk fluid
with the same chemical potentialm. This facilitates the com-
parison with previous publications in which the results f
similar geometries are expressed in terms ofrb @22#; in ad-
dition, dependences onrb are easier to interpret than thos
on m.

There seem to be only very few WDAs that are spec
cally designed to describe an inhomogeneous hard-disk fl
@25#. This dearth is tied to the fact that experimental resu
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2996 55B. GÖTZELMANN AND S. DIETRICH
are rare, as it is difficult to realize a truly two-dimension
system experimentally and that the construction of ma
WDAs relies on the knowledge of an analytic expression
the bulk fluid free energy and of the direct correlation fun
tion. In three-dimensional systems of spheres the Per
Yevick closure can be used, but there is no analytic solu
thereof known for the two-dimensional case.~For an alterna-
tive approach see Ref.@25#.! Although it should be possible
to construct a WDA also for this case, following the conce
of Curtin and Ashcroft@26#, which does not requireanalytic
expressions for the bulk quantities, it is natural to analyze
alternative approach@27# that amounts to evaluating the e
cess free-energy functionalFex

(d53)@rd53# @Eq. ~2.13!# of the
hard-sphere fluid for

r3~R!5r2~x,y!d~z! ~2.15!

and leads~for the LWDA! to the following approximate
expression for the two-dimensional hard-disk fluid in an a
A:

Fex
~2!@r2#5(

i50

3 E
A
dxdyH 12 r2~x,y! f n8„r̄n~x,y,z50!…

1E
2s

s

dzF f n„r̄n~R!…2
1

2
r̄n~R! f n8„r̄n~R!…G J .

~2.16!

The fact that this approximation originates from a theo
designed for three spatial dimensions is especially appa
in the weighted densities

r̄n~R!5E
R2
dx8dy8r2~x8,y8!wn~Aux2x8u21uy2y8u21z2!,

~2.17!

which still depend on three coordinates.

III. COMPARISON OF A HARD-DISK FLUID
WITH A HARD-SPHERE FLUID

IN A NARROW SLIT

In order to assess the quality of the approximation lead
to the free-energy functional in Eq.~2.16! of a hard-disk
fluid we consider the special case of a homogeneous de
distribution. By settingr2(x,y)5r2,b in Eq. ~2.15! the ex-
cess free energy in Eq.~2.16! can be compared with th
results of the scaled-particle theory~SPT! @28#

bFex
~2!@r2,b#5Ar2,bF h2

12h2
2 ln~12h2!G , ~3.1!

where A denotes the cross section of the slit a
h25r2,b(p/4)s

2 the packing fraction. It turns out that for a
densities the values of the LWDA free energy@Eq. ~2.16!#
are higher than the SPT results and the difference incre
with increasing densityr2,b . For r2,bs

350.6 there is a de-
viation of about 17%. The pressure of the system is given

P52
]F ~2!@r2#

]A UT,N5rd
2 ]~F ~2!@r2#/N!

]r2
U
T,N

~3.2!
l
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and can be compared with results of integral theories suc
the hypernetted chain~HNC! approximation and simulation
@29#. The pressure calculated within the LWDA approxim
tion is comparable with that of the HNC results, but high
than the one obtained from simulation data. Thus we c
clude that the suggested functional in Eq.~2.16! is a reason-
able but not very accurate approximation for a hard-d
fluid.

If the width of a slit filled with a hard-sphere fluid i
decreased one could be inclined to expect that in the li
L→2s @compare Eq.~2.10!# the density profile reduces to
d distribution as in Eq.~2.15! and consequently that in thi
limit the system is described by the density-functional the
of a two-dimensional system, e.g., by the one propo
above. However, if Eq.~2.15! is inserted into the expressio
for the ideal gas contribution to the free-energy function
@Eq. ~2.7! for d53#, one obtains a mathematically ill-define
expression. Since this defect is not cured by the LWDA e
cess free-energy functional, a well-defined grand canon
functional V@r# @Eq. ~2.6!# can only be constructed i
r(R) remains a finite function even in the limitL→2s.
Indeed Henderson@30# has shown that in first order o
L̃:5L22s the contact density is given exactly by

r~z5s1!5L23expS m

kTD F12r~s!ps2L̃1OS S L̃
s
D 2D G
~3.3a!

5L23exp~bm!
1

11ps2L̃L23exp~bm!

1OS S L̃
s
D 2D . ~3.3b!

This implies that in the grand canonical ensemble in the li
L→2s the fluid is squeezed out of the slit and that the nu
ber density^N&/A5*s

L2sdz r(z) of the particles per area
still contained inside the slit vanishes linearly as the width

decreased: limL̃→0^N&/A→r(z5s1) L̃ . Due to this small
number of particles per area the fluid behaves like an id
gas and in zeroth order the density is determined by
Boltzmann distribution@Eq. ~3.3b!#. On the other hand, the
local number density is rather high because the value of
chemical potentialm is imposed by the bulk reservoir. It i
interesting to note that one obtains the same limit for ro
confined to a finite line segment in the limit of a vanishin
length of the segment@31#:

lim
L̃→0

^N&/L̃→~1/L!exp~mb!.

In order to investigate the limitL̃→0 within the frame-
work of the LWDA the functionals in Eq.~2.13! and in Eq.
~2.7! are simplified according to the following approxima
tions. For small values ofL̃ the local density in the slit can
be taken to be constant and equal tor(s1). Also the weights
wn(Aux12x2u21uy12y2u21uz12z2u2) do not vary signifi-
cantly for s,z1,L2s for n50,1,2,3 andx1 ,x2 ,y1 ,y2 ,z2
PR fixed. With the resulting functionals
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55 2997DENSITY PROFILES AND PAIR CORRELATION . . .
Fex
~3!@r~s!#5(

i50

3 E
A
dxdyH 12 r~s!L̃ f n8„r̄n~x,y,z50!…

1E
0

L

dzF f n„r̄n~R!…2
1

2
r̄n~R! f n8„r̄n~R!…G J ,

~3.4!

r̄n~R!5E
R2
dx8dy8r~s!L̃wn~Aux2x8u21uy2y8u21z2!,

~3.5!

and

bF id
~3!@r~s!#5AL̃r~s!$ ln@L3r~s!#21%, ~3.6!

the grand canonical potential

bV@r~s!#5b$Fex
~3!@r~s!#1F id

~3!@r~s!#%2bmAL̃r~s!
~3.7!

is determined. Sincer(s) remains finite,L̃r(s) vanishes in
the limit L̃→0 and the functionsf in Eq. ~3.4! can be ex-
panded into a Taylor series yielding

b

A
V@r~s!#5

1

2
s2pr~s!2L̃21r~s!L̃$ ln@L3r~s!#21%

2mL̃r~s!b, L̃→0. ~3.8!

Minimizing this expression with respect to the contact de
sity r(s) leads to

L3r~s!5exp@mb2r~s!ps2L̃# ~3.9!

and via further expansion to Eq.~3.3a!. This renders the
satisfying result that in the limitL̃→0 up to first order in
L̃ the LWDA reduces to the exact result.
Since, as shown above, the LWDA is capable of b

describing reasonably well a hard-disk fluid and reproduc
correctly in first order ofL̃ the limit L̃→0, for a hard-sphere
fluid we are in the position to compare these two differe
physical systems within one and the same approach.
excess free-energy functionals in Eq.~2.16! and in Eq.~3.4!
can be mapped onto each other using the replacem
r2b↔L̃r(s). This replacement only states that the numb
densities per area have to be the same for both systems

E
s

s1L̃
dzr~z!5L̃r~s!1O~ L̃2!5r2,b . ~3.10!

Obviously, this mapping cannot be used to relate the id
gas contributions of a hard-disk fluid@Eq. ~2.7! with d52#
and of a fluid in a slit@Eq. ~3.6!#. For them no simple map is
found. Thus we conclude that the hard-sphere fluid wit
narrow slits and connected to a reservoir does not resem
the genuinely two-dimensional hard-disk fluid. If one wan
to prepare a quasi-two-dimensional system with a nonvan
ing densityrd52 one has to resort to the canonical ensemb
i.e., one has to restrict a fixed number of particles to a fin
volumeV5As.
-
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The mechanism, which leads to a finite density in t
limit L̃→0, is revealed by Eq.~3.8!. The grand canonica
potential is split into the excess part12s

2pr(s)2L̃2, which
captures the contribution of the interaction between the p
ticles, the ideal gas partr(s)L̃$ ln@L3r(s)#21%, which
mainly takes into account the entropy; and the p
2mL̃r(s)b, due to the chemical potential. As the exce
part is quadratic inL̃ it becomes less important as the wid
of the slit decreases and ultimately the ideal gas part de
mines the behavior of the system. Thus the entropy is
sponsible for the fact that the local density in the slit rema
finite in the limit L̃→0.

IV. CHARACTERIZATION OF HARD-SPHERE FLUIDS
IN NARROW SLITS

Since lateral ordering phenomena are beyond the scop
the present work, we focus on sufficiently small densit
that are below the onset of such freezing transitions. In
homogeneous bulk freezing occurs atrbs

3.0.94 @32#, but
already near a single wall prefreezing sets in at a sligh
lower density@20#. Experiments in slits@33,34# revealed a
rich structure including phase transitions between differ
ordered states as the width of the slit varies. For these kin
systems canonical Monte Carlo simulation were able to
produce the phase diagram satisfactorily@35#. By analyzing
the total correlation function of Monte Carlo simulation da
Chuet al. @8# have shown that forL53s a hexagonal pack-
ing close to the walls occurs. Thus, besides a complete fr
ing of the whole slit, also lateral ordering in parts of the s
close to the walls seems possible. Therefore, we have lim
our present investigations torbs

350.68. For this density
extensive Monte Carlo simulations@11# gave no hints for an
onset of lateral ordering.

A. Properties of the density profile

Using various mesh sizes (0.005s–0.05s) for the inte-
gration the grand potential in Eq.~2.6! was minimized for
numerous slit widths (L52.001s–12s). If the width L is
larger than 12s, the resulting density profiles close to one
the walls agree well with those near the single wall of t
corresponding semi-infinite system@22#. In this limit the wall
theorem@r(s1)5bP# is fullfilled. Figure 1 shows the den
sity profile for two different slit widths (L55.1s and
L53.8s). They are symmetric and exhibit a layered stru
ture due to packing effects. Due to the absence of rigor
results the accuracy of our results can only be assesse
comparing them with simulation data. Surprisingly, to o
knowledge there is only a single publication, namely,
molecular-dynamics simulation@13#, that allows us aquan-
titative comparison. In this case the chemical potential of
fluid is not known and one has to use a different paramete
order to be able to map the two approaches onto each o
Since the LWDA is not an exact theory, the degree of agr
ment depends on the choice of this parameter. Here we
the mean densityrm @see Eq.~4.3!# of the particles in the slit,
but we correct the value of the LWDA by a facto
r(z5s1)simulation/r(z5s1)LWDA5PCS/PPY51.03 in order
to take into account the fact that the LWDA slightly unde
estimates the pressure of the bulk fluid.PPY denotes the pres
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sure of a homogeneous LWDA fluid andPCS is the almost
exact Carnahan-Starling pressure@36#. Figure 1~a! reveals a
satisfactory agreement with the simulation data. Similar
the case of a hard-sphere fluid close to a single wall o
semi-infinite system@22#, the first minimum is slightly too
shallow, but the phases of the oscillations agree rather w
If one investigates the changes in the form of the den
profile upon increasing the slit widthL, one finds the follow-
ing scenario: At very small widths the contact densityr(s)
is very high and the profile between the walls is almost fl
If L is increased the profile develops a U shape with a single
minimum atz5L/2 and bothr(s) and r(L/2), which are
shown in Fig. 2 as the full and the dotted lines, respective
decrease rapidly. As a function ofL, the contact value attain
a minimum atL52.39s and reaches again a maximum
L53.01s. As a function of L the value of the density
r(L/2) in the center reaches its first minimum atL53.07s
and then increases slowly. At aboutL53.4s two local
maxima in the density profiler(z) appear at approximatel
z52s and z5L22s @compare Fig. 1~b!#, which are each
approximately one hard-sphere diameters apart from the
first layer at the distant wall. These two extrema merge i
a single maximum when the slit width is further increas
(L54.0s). It is difficult to determine reliably the precis

FIG. 1. Density profile of a fluid of hard spheres with diame
s between two hard walls located atz50 andz5L @compare Eq.
~ 2.10!# according to the LWDA density-functional theory~full
curve! for the slit widths ~a! L55.1s ~i.e., L̃53.1s) and ~b!

L53.8s ~i.e., L̃51.8s). In ~a! the corresponding bulk density i
chosen asrbs

350.546 to allow a comparison with molecular dy
namics ~MD! simulation data@13#. In ~b! the bulk density is
rbs

350.683, as in all remaining figures.
o
a

ll.
y

t.

,

o

value of the slit width for which these two extrema can
longer be distinguished because it depends sensitively on
approximations entering the LWDA@37#. For L53.98s the
contact density attains its third maximum and the dens
profile has a pronounced W-like shape. For increasingL the
peak in the center broadens and starting at aboutL54.5s it
splits into two peaks located approximately atz52s and
z5L22s. In between there is a local minimum, whic
deepens and is smallest forL55.1s ~see Fig. 2!. The slit
contains now four layers. If the width is further increas
more layers are added by a similar mechanism. The extr
characterizing this process are given in Table I. The val

r

FIG. 2. Within the LWDA the contact densityr(s) ~full line!
and the densityr(L/2) in the center of the slit~dotted line! of a
hard-sphere fluid are shown for a bulk density ofrbs

350.683. The
slit width L varies between 2.1s and 8s. In the limit L→` the
contact density approaches the constant valuer`(s)s

353.84. In
the limit L→2s the two densitiesr(s) and r(L/2) approach the
same limitL23exp(m/kT) as given by Eq.~3.3b!. The dots denote
results of grand canonical Monte Carlo~MC! simulations@11#.

TABLE I. Characteristics of a hard-sphere fluid between tw
hard walls of widthL at a bulk densityrbs

350.683. The table lists
those slit widthsL/s for which the contact densityr(s), the den-
sity r(L/2) at the center, the coverageG(L) @Eq. ~4.1!#, and the
finite-size contribution to the free energyg(L) @Eq. ~4.6!# attain
their extrema:~a! minima and~b! maxima.

r(s) r(L/2) G(L) g(L)

~a!
2.39 2.63 2.18
3.41 3.07 3.62 3.12
4.42 4.60 4.22
5.43 5.12 5.60 5.21
6.43 6.60 6.21
7.42 7.12 7.60 7.20

~b!

2.06 2.76
3.01 3.10 3.74
3.98 4.12 4.10 4.72
4.95 5.10 5.71
5.95 6.15 6.09 6.71
6.93 7.08
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55 2999DENSITY PROFILES AND PAIR CORRELATION . . .
of the contact density and of various other quantities that
be defined below~see Fig. 3! oscillate as a function ofL with
a period of abouts. Within each of these oscillations anoth
layer is added to the slit. The densityrL(L/2) at the center of
the slit has a minimum if an even number of layers are in
slit and a maximum if there is an odd number. Therefore,
quantity exhibits a periodicity of about 2s.

A useful global description of the density distribution
the slit is given by the excess coverage

G~L !:5E
0

L

dz@r~z!2rb# ~4.1!

and the related mean density

rm~L !:5
1

LE0
L

dzr~z!, ~4.2!

or

rm~L !5rb1G~L !/L. ~4.3!

As shown in Fig. 3,G(L) exhibits oscillations with a period
of abouts. Due to the factor 1/L @see Eq.~4.3!# the corre-
sponding oscillations ofrm(L) are less pronounced.

In the limit L→` the coverageG(L) equals twice the
coverage of a hard-sphere fluid close to a single wall, wh
has been discussed in Ref.@22#. For L larger than 5s the
coverage differs only slightly from the limiting valu
G(`):

G~L !2G~`!

G~`!
,0.04, L.5s. ~4.4!

This specifies the range of validity for the well-known a
proximationrm.rb1G(`)/L @38#. In the limit L→2s the
densityr(z) is constant@Eq. ~3.3b!#, so that Eq.~4.2! yields

G~L→2s!5@L22s#@L23exp~bm!2rb#

1OX S Ls D 2C →L→2s

0. ~4.5!

B. Finite-size contribution to the free energy
and resulting solvation forces

In the context of a slit geometry, a particularly interesti
quantity is the finite-size contribution to the grand potent

g~L !:5 lim
A→`

1

A
~V@r#1@L22s#PPY!, ~4.6!

wherePPY is the pressure of a homogeneous bulk liquid
the same chemical potentialm. In the limit L→`, g(L)
reduces to twice the surface tension of a hard-sphere
close to the single hard wall of a semi-infinite system. Inse
ing Eq. ~3.9! into the expansions in Eqs.~3.8! and ~4.6!
yields, in the opposite limitL→2s,

2g~L !5F 1b r~s!2PPYG @L22s#1OXS L̃
s
D 2C . ~4.7!
ll

e
is

h

l

t

id
t-

The behavior of g(L) in the intermediate regime be
tween these two limits is displayed in Fig. 3. The diffe
ence g(L)2g(`) decreases oscillatorily with increasin
slit width. The maxima decay exponentiall
@;exp(21.23L̃/s)#; their positions are given in Table I.

The force between the two plates is an experimenta
accessible quantity@6#. Based on thermodynamics, this s
called solvation force per areaf (L) is given as@39#

f ~L !52 lim
A→`

1

A S ]V

]L D
T,m,A

2PPY. ~4.8!

Using Eq.~4.6! one obtains

f ~L !52S ]g

]L D
T,m,A

, ~4.9!

so that

g~L !2g~`!52 ÈL

dL8 f ~L8!. ~4.10!

Sinceg(L→2s)50 @Eq. ~4.7!# it follows that

g~`!52E
2s

`

dL8 f ~L8!52gsl . ~4.11!

Thus the surface tensiongsl5g(`)/2 of a hard-sphere fluid
close to a hard wall is a measurable quantity accessibl
force measurements. Equation~4.11! remains valid even for
softly interacting spheres close to a hard wall, but not if t
hard wall is replaced by a soft substrate potential.

The solvation force can also be expressed in terms of
difference between the contact density at the finite slit wi
L, r(s), and at infinite slit width,r`(s) ~see Ref.@40# and
the Appendix!:

b f ~L !5r~s!2r`~s!. ~4.12!

This difference is shown in Fig. 2. Minimizing the gran
canonical potential within the LWDA, we obtain both th
density profile as the minimizing function, which leads to t

FIG. 3. CoverageG(L) and finite-size contribution to the fre
energyg(L) @Eq. ~4.6!# of a hard-sphere fluid between two flat ha
walls for various slit widthsL52.7s–8s at a bulk density of
rbs

350.683. In the limit L→` the coverage approache
G(`)520.92s2 andg(L) reaches the valuebg(`)s2521.95.
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3000 55B. GÖTZELMANN AND S. DIETRICH
force via Eq.~4.12!, and the value of the minimumV@r#,
which yields the force using Eq.~4.8!. We find numerically
that both routes lead to the same result. This can be an
pated because any WDA is thermodynamically se
consistent with respect to this relation~see the Appendix!.
Here it serves as a helpful check of the numerical calcu
tions.

For a physical understanding of the above results i
rewarding to consider the system depicted in Fig. 4. T
solvation force per areaf (L) is the net force exerted on th
wall b and it is positive if it is directed outward, i.e., to th
right. ForL.2s it is shown in Fig. 2 and fors,L,2s it
is constant,

f ~L !52
1

b
r`~s!, s,L,2s, ~4.13!

because the particles on the right side of wallb exert the
constant bulk pressurePPY5(1/b)r`(s) to the left. Starting
with the wall b at a position corresponding to a slit widt
L the workg(L)2g(`) is gained@Eq. ~4.10!# if one moves
it to infinity ~see Fig. 3!. If one now considers the particula
caseL52s2 the above process starts from a configurat
involving only asinglesurface and leads to a configuratio
of three independent solid-fluid interfaces without chang
the bulk contribution to the free energy of the total syste
but increasing thesurfacecontribution to the free energy b
2gsl . This provides a transparent interpretation of Eq.~4.11!
because the integral over the solvation force is the work
plied to the system during this process. In addition th
considerations show that Eq.~4.11! is valid in general and
not only within the LWDA. Together with the general rela
tion in Eq. ~4.10!, this implies that the equation
g(L→2s)50 is also valid in general. Finally, sincegsl is
negative@22# these arguments also tell that onegainswork

FIG. 4. Schematic plot of a model system consisting of a pla
hard wall~a! on the left side and a hard piston~b! that is in front of
and parallel to the left wall. It can be fixed at different distanc
L. The hard-sphere fluid betweena andb and to the right ofb are
connected to the same grand canonical reservoir and thus a
equilibrium with each other. The force per area andkBT acting on
the piston is given byb f (L)5r(s)2r`(s) and is plotted in Fig. 2
as the full line.
ci-
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by moving the wallb from L52s to L5`. Thus the gen-
eration of these two additional solid-fluid interfaces is favo
able.

The negative sign ofgsl may provoke the question
whether the hard-sphere fluid is actually stable against
spontaneous formation of cavities. The effect of the form
tion of such cavities on the density distribution of the flu
can be thought of to be same as the effect induced by
immersion of, e.g., a hard wall~Fig. 4! with a minimum
thicknesss. The difference in free energyDF between the
homogeneous and the corresponding perturbed system
sists of the two surface contributionsgslA and the bulk free-
energy density times the excluded volumesA of the cavity:
DF/A52gsl1PPYs. Although gsl is negative, it turns out
thatDF is positive@41#, so that the cavity formation is dis
favored.

The above discussion is concerned with the particu
casesL52s and L5`. For generalL it is worthwhile to
note that the extrema ofg(L) correspond to the zeros of th
solvation forceF(L), which are documented in Table I. If in
Fig. 4 the wallb is allowed to float freely, the minima o
g(L) correspond to the most favorable slit widths. Accor
ing to Fig. 3, the global minimum is located atL52.18s.
Thus, in thermal equilibrium the optimum configuration
Fig. 4 corresponds to the case in which the wallsa andb are
separated such that a monolayer of hard spheres fits in
tween with a little bit of space left. However, one shou
keep in mind that this statement is valid only if the mass
the piston is much larger than the masses of the hard sph
Otherwise the fluctuations of the position of the piston m
be treated on the same footing and together with those of
hard spheres. In this sense, the above line of argument,
that the equilibrium position of the piston is determined
the minimum ofg(L), corresponds to a Born-Oppenheim
approximation.

At the width L5ns just n21 spheres fit on top of eac
other into the slit. One may wonder whether this pecul
matching condition leaves a particular signature in theL de-
pendence of the various quantities studies above. The co
sponding (d22)-dimensional problem of hard rods of leng
s confined to a segment of lengthL on a line can be solved
exactly@31# and one finds in this case that the second deri
tive of the mean number of rods exhibits discontinuities
L5ns whose magnitudes decrease for increasing value
L @31#. Since the additional spatial dimensions of a thre
dimensional slit allow for an easier rearrangement of
spheres upon packing, we expect that ind53 these discon-
tinuities are either smeared out or shifted to higher deri
tives. Although, in principle, one should be prepared for t
occurrence of such singularities in, e.g.,g(L) or f (L), they
turn out to be so weak that they do not show up in o
present LWDA approach on the scale of the numerical re
lution we used.

C. Derjaguin approximation for the force
between large spheres

So far our analysis has been confined to the study of
slit geometry that may be applicable to force microsco
measurements of confined colloidal particles whereby
solute particles only contribute to the effective interacti
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55 3001DENSITY PROFILES AND PAIR CORRELATION . . .
between them; in the present context this effective inter
tion is approximated by a hard-core repulsion potent
However, it turns out that the results for the slit geome
can even be used to analyze this latter effective interac
potential between large colloidal particles of radiusR that
are immersed in a solute composed of small particles w
diameters @42#. ~For R→` this problem reduces to th
standard slit geometry.! If the centers of the two large har
spheres are kept at a fixed distance 2R1h2s, in the limit
R@s the solvation force between them is given by the D
jaguin approximation@43#

f s~h!5pRE
h

`

dL8 f ~L8!5pR@g~h!2g~`!#, ~4.14!

where Eq.~4.11! has been used. The large spheres to
each other forh5s; in this case there is no small sphe
between the two large spheres along the symmetry axis.
cording to Eq.~4.14!, the finite-size contribution to thefree
energyof a slit of width h is proportional to theforce be-
tween two hard spheres of radiusR. For slit widths larger
than 2s the free energy is given by Fig. 3 and fo
s,L,2s Eq. ~4.13! is used in Eq.~4.14!. The combination
of these results leads to Fig. 5.

The global minimum ath5s indicates that a strong
depletion force will press the two spheres together if th
touch each other. However, in order to find the thermo
namically most favorable separation one must consider
effective interaction potential

Ws5 Èh

dh8 f s~h8! ~4.15!

between the two large spheres. This is shown in Fig. 5 as
dotted line. For low densities (rs3,0.4) this quantity has
been investigated in the framework of an expansion i
powers ofr @44#. The present density-functional theory e
tends these results to higher densities.Inter alia, the interest
in this effective potential arises from the question whethe
binary mixture of hard spheres can exhibit flocculation. F

FIG. 5. Forcef s(h) between two fixed hard spheres of a lar
radiusR immersed in a fluid of hard spheres of diameters!R as
function of the minimum distanceh between the surfaces of th
large spheres@see Eq.~4.14!#. The centers of the large spheres a
at a distance 2R1h2s. The dotted curve represents the effecti
interaction potential between the two large spheres.
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such systems the PY theory rules out phase separation a
densities and size ratios@45#. However, modern integra
theories indicate that phase separation can occur@46#.

V. TWO-POINT CORRELATION FUNCTION

The two-point correlation function of the HSHW mod
depends on the normal distancesz1 andz2 from the left wall
and on the lateral distancer 12 ~see Sec. II A!. The system is
specified by the bulk densityrb of the corresponding homo
geneous system with the same chemical potential and by
width of the slitL. Thus the correlation function depends o
five independent variables. Within the context of a resea
paper, a complete graphical account of the dependence
all five variables is not feasible. Therefore we have decid
to discuss the general mechanism governing the behavio
the total correlation function on the basis of the Percus t
particle theorem~see the following paragraph! and to select
the display of the dependence onr 12 ~with z15z2 and fixed
rb in all plots! for L fixed and various values ofz1 as well as
for z1 fixed and various values ofL. Here and in the follow-
ing we discuss the cased53 only.

In the present context the Percus test-particle theo
@40# states that the productr(z1)g(r 12,z1 ,z2) @see Eq.~2.9!#
for a hard-sphere fluid in a slit of widthL is equal to
the one-point conditional density distributionr„R1
5(r12,z1)uR25(0,z2)… of a hard-sphere fluid exposed to a
external potential consisting of a slit of widthL and, in ad-
dition, of a hard sphere of diameters whose center is fixed
at R25(0,z2). For rbs

350.546, L55.1, andz25s this
product is shown in Fig. 6. In the limitr 12→` it reduces to
the density profile in Fig. 1~a!, which corresponds to the
same slit width and the same chemical potential. This co
parison reveals that approximatelyr„R15(r12,z1)uR2
5(0,z2)… is the superposition of the density profile of Fi
1~a! and the oscillatory density distribution around a fix
hard sphere placed in a previously homogeneous bulk fl
Accordingly, the coordinatesz1 of the maxima and minima
of r(R1uR2) which are denoted in Fig. 9 by the dots an
circles, respectively, almost coincide with those of the d
sity profile of Fig. 1~a! and thus in Fig. 9 they line up nearl
parallel to the wall. This general mechanism was also bo
out in previous analyses~the PY approximation for a fluid in
a slit @16# and the LWDA for a fluid close to a single wa
@22#! and has proven to yield a roughly correct picture of t
radial correlation function in confined geometries.

It is rewarding to investigate for different slit widthsL the
radial distribution functiong(r 12,z1 ,z2) as a function of
r 12, i.e., parallel to the wall withz15z2 fixed. This reveals
the influence of the distant wall on the correlation functi
close to the near wall. This dependence is of particular in
est because it can be measured directly by using digital vi
microscopy@5#. Although such experimental data are not y
accurate enough to facilitate a quantitative comparison w
theoretical results, we surmise that in the near future
experiments will be improved sufficiently. For a bulk dens
of rbs

350.683 the radial distribution function is shown fo
z15z25s andz15z251.5s in Figs. 7~a! and 7~b!, respec-
tively. Compared with the corresponding radial distributi
function of a homogeneous bulk fluid with the same chem
cal potential~see the dashed–double-dotted lines in Fig.!
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3002 55B. GÖTZELMANN AND S. DIETRICH
the amplitude of the oscillations is reduced forz15z25s,
but enhanced forz15z251.5s. Since the increase ofz1 by
the radius of a sphere already alters the amplitudes so
foundly, we conclude that accurate measurements of par
correlations require a spatial resolution in thez direction of
about 0.1s or better. For increasingL the radial distribution
function reduces rapidly to that of the corresponding se
infinite system@22#. In Fig. 7~a! for a slit width of L55s
(L̃53s) for all values ofr 12 the influence of the distant wa
already is no longer visible within the resolution of the plo
This is remarkable because for this width only four sphe
fit side by side into the slit.

In Sec. IV we have discussed the HSHW model for tw
sets of the parametersL and rb in terms of the one-poin
correlation function and related quantities. In Figs. 8 an
the same cases are now investigated in terms of the
point correlation functions as a function ofr 12 for various
values ofz15z2 and forrbs

350.546 andL/s55.1 in Fig. 8
@compare Fig. 1~a!# and for rbs

350.683 andL/s53.8 in
Fig. 9 @compare Fig. 1~b!#. The various values ofz1 are
chosen to coincide with the positions of the extrema in
corresponding density profile~see Fig. 1!. For both systems
in the casez15s the contact valueg(r 125s,z1 ,z25z1) is
strongly reduced as compared to the bulk valuegPY(s),
whereas for larger distancesz1 these contact values ar
rather close to each other and to the bulk value. This is
accordance with the results obtained for a semi-infinite ha
sphere fluid near a single wall@22#. A further analysis of
these results reveals that for those values ofz1 that corre-

FIG. 6. Within the LWDA the conditional singlet densit
r(R1uR2)5r(z1)g(r 12,z1 ,z25s) of a hard-sphere fluid in a slit o
width L55.1s at a reference bulk density ofrbs

350.546 in the
presence of a hard sphere of the same diameter whose cen
fixed atR25(r 1250,z25s). ~This position is marked by a cross!
Due to g(r 12→`,z1 ,z2)51 one recovers forr 12→` Fig. 1~a!,
which corresponds to the same values ofL andrb . The dots and
circles in the contour line plot at the bottom of the figure denote
positions of the local maxima and minima, respectively. The das
line indicates the excluded volume due to the test particle; it is
an isodensity line. The value of the singlet density varies by
amount 0.1s23 between neighboring contour lines. The conto
lines are shown only for values less than 1.0s23. ~In the actual
calculations a mesh size of 0.02s in thez and ther 12 direction has
been used.! As can be seen from the contour lines, the perturbat
of the density distribution in the slit due to the presence of the fi
sphere atR25(0,s) dies out forr 12*3s or z1*3s.
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spond to the minima of the density profile these amplitud
of the oscillations in g(r 12,z1 ,z25z1) are enhanced
whereas for those values ofz1 corresponding to the maxim
of r(z) these amplitudes are reduced. This is surprising
cause the amplitudes of the oscillations in the bulk corre
tion functiongPY(r ;rb) decrease with decreasingrb . Thus
the natural attempt to approximate the radial distribut
function such that in the casez15z2 it reduces to
g(r 12,z1 ,z25z1)'gPY„r5r 12;rb5r(z1)… is unsuccessful
because this approximation renders the opposite tendenc
the actual oscillatory behavior at least for the values of
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FIG. 7. Radial distribution functiong(r 12,z1 ,z2) of a hard-
sphere fluid for various slit widthsL at the reference bulk densit
rbs

350.683. The lateral distancer 12 varies between 1.2s and
3.0s for z15z2 fixed with z15s in ~a! andz151.5s in ~b!. In the
limit r 12→s the correlation functions increase rapidly to valu
2.3–2.4 in~a! and 2.8–3.1 in~b! depending onL. Note that we
have used the same scales of the axes in~a! and ~b! in order to
facilitate a direct comparison of the two cases. In both plots
dashed–double-dotted curves denote the correlation function o
corresponding homogeneous bulk fluid within the PY approxim
tion. In ~a!, for all values ofr 12 the correlation function cannot b
distinguished from its semi-infinite form@22# for L*5s.
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55 3003DENSITY PROFILES AND PAIR CORRELATION . . .
chemical potentials and slit widths considered here. On
basis of a known expression for the bulk correlation funct
g(r ) there have been efforts@47,48# to construct a suitable
ansatz for the radial distribution function for a hard-sph
fluid close to a hard wall. Since such an ansatz does

FIG. 8. Radial distribution functiong(r 12,z1 ,z25z1) of a hard-
sphere fluid in a slit of widthL55.1s at a bulk density
rbs

350.546. The decay of the correlations parallel to the walls
shown for various values ofz15z2. According to Fig. 1~a!,
z151.0s corresponds to the contact with the left wall,z151.64s to
the first minimum,z152.2s to the first maximum, andz152.55s
to the midpoint of the density profile of this system.

FIG. 9. Radial distribution functiong(r 12,z1 ,z25z1) of a hard-
sphere fluid in a slit of widthL53.8s at a bulk density
rbs

350.683. As in Fig. 8, the decay of the correlations parallel
the walls, i.e., as a function ofr 12, is shown for various values o
z15z2. According to Fig. 1~b!, z151.0s corresponds to the contac
with the left wall,z151.46s to the first minimum,z151.78s to the
first maximum, andz151.9s to the midpoint of the density profile
of this system.
e
n

e
ot

incorporate the peculiar behavior of the actual radial dis
bution function described above, the reliability of these a
proximations is rather limited.

VI. SUMMARY

We have obtained the following main results for a fluid
hard spheres of diameters confined to parallel and structure
less hard walls at a distanceL.

~i! On the basis of the linear weighted density approxim
tion, which describes an inhomogeneous three-dimensio
fluid in the grand canonical ensemble, we have construc
an approximation for the two-dimensional analogue of a
mogeneous hard-disk fluid. This approximation compares
vorably with simulation data.

~ii ! As proved by Henderson@30# in the limit that the
width L of the slit is reduced such that it can accommodate
most a monolayer of the fluid (L→2s), the density profile
approaches a large but finite constant value. This implies
in this limit the fluid is squeezed out of the slit. Up to fir
order in L̃5L22s we find that the LWDA reproduces thi
limit exactly.

~iii ! The two-dimensional hard-disk fluid and the thre
dimensional hard-sphere fluid confined to a narrow slit ha
been compared in the grand canonical ensemble. For fi
chemical potentials the confined hard-sphere fluid does
resemble the genuinely two-dimensional hard-disk fluid.

~iv! The density profilesr(z) calculated within the
LWDA compare satisfactorily with simulation data~Fig. 1!.
The dependence of the contact densityr(z5s) on the slit
width L is close to that obtained from simulation data, a
though the amplitude of the oscillations in this depende
as obtained from LWDA is slightly smaller than that o
tained from the simulations~Fig. 2!.

~v! Both within the framework of exact thermodynamic
and within LWDA, the finite-size contribution to the fre
energyg(L) @see Eq.~4.6! and Fig. 3# represents the poten
tial of the solvation forcef (L). The minima ofg(L) ~see
Table I! correspond to metastable distances between fre
movable plates immersed into a fluid reservoir~Fig. 4!. Fur-
thermore, within the Derjaguin approximationg(L) renders
the force between two large spheres suspended in a liqu
small spheres@see Eq.~4.14!#.

~vi! Within the LWDA and based on the above results, w
have determined the direct correlation function. By inverti
the Ornstein-Zernike equation the total correlation funct
has been calculated. We have discussed it within the fra
work of the Percus test-particle theorem~Fig. 6!.

~vii ! The influence of the distant wall on the radial dist
bution functiong(r 12,z15s,z25s) along the near wall de-
creases rapidly with increasing slit widthL ~see Fig. 7!.

~viii ! For a fixed slit width and bulk reference densi
rb we have analyzed the dependence of the radial distr
tion functiong(r 12,z1 ,z25z1) on z1. We find that for those
values ofz1 for which the density profiler(z) exhibits a
local minimum~maximum!, the amplitude of the oscillations
of this correlation function as a function ofr 12 is enhanced
~reduced! compared to the corresponding bulk correlati
function.

A major advantage of the present density-function
theory is that it is computationally much less demanding th

s
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integral equation theories or numerical simulations with
losing its competitiveness as far as the quantitative reliab
is concerned. Furthermore, density-functional theory yie
relatively easy access to free energies and solvation for
Therefore, we are encouraged to extend this analysis to fl
governed by dispersion forces in order to refine the prese
available ansatz for the two-point correlation functions
such systems@47#.
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APPENDIX

Upon differentiating the equilibrium grand canonical p
tential in Eq.~2.6! one obtains, by using the chain rule,

dV

dV~R!
5r~R!1E

Rd
ddR8H dF@r#

dr~R8!
2@m2V~R8!#J dr~R8!

dV~R!
.

~A1!

For the equilibrium density distribution the expression with
the curly bracket vanishes. This is true even forapproximate
expressions for the functionalF@r#5F id@r#1Fex@r# such
as, the one used for the LWDA. According to Eq.~2.10!, the
external potentialV(R) depends parametrically onL, so that
with Eq. ~A1! one has
ys

e

to
G

o-

.

t
y
s
s.
ds
ly

S ]V

]L D
T,m,A

5E
Rd
ddR

dV

dV~R!

]V~R!

]L

5E
Rd
ddRr~R!

3S 2
1

b
exp@bV~R!#

]exp@2bV~R!#

]L D
52

1

bERdddRr~R!exp@bV~R!#

3
]

]L
@Q~z2s!1Q~L2s2z!21#

52A
1

b
$r~z!exp@bV~z!#%z5L2s

52A
1

b
r~L2s!52A

1

b
r~s!. ~A2!

The penultimate step in Eq.~A2! is based on the fact that th
productr(z)exp@bV(z)# is continuous as a function ofz @49#,
so that the value of this product atz5L2s can be obtained
by considering the limitz→L2s20, whereV(z)50. This
renders the equivalence between the two definitions in E
~4.8! and ~4.12! both for exact and for approximate expre
sions forF@r#.
.
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